Abstract

The branching angle and diameter ratio in epicardial coronary artery bifurcations are two important determinants of atherogenesis. Murray's cubed diameter law and bifurcation angle have been assumed to yield optimal flows through a bifurcation. In contrast, we have recently shown a 7/3 diameter law (HK diameter model), based on minimum energy hypothesis in an entire tree structure. Here, we derive a bifurcation angle rule corresponding to the HK diameter model and critically evaluate the streamline flow through HK and Murray-type bifurcations. The bifurcations from coronary casts were found to obey the HK diameter model and angle rule much more than Murray's model. A finite element model was used to investigate flow patterns for coronary artery bifurcations of various types. The inlet velocity and pressure boundary conditions were measured by ComboWire. Y-bifurcation of Murray type decreased wall shear stress-WSS (10%–40%) and created an increased oscillatory shear index-OSI in atherosclerosis-prone regions as compared with HK-type bifurcations. The HK-type bifurcations were found to have more optimal flow patterns (i.e., higher WSS and lower OSI) than Murray-type bifurcations which have been traditionally believed to be optimized. This study has implications for changes in bifurcation angles and diameters in percutaneous coronary intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.