Abstract

To clarify the role of carbon surface nature in the power generation of microbial fuel cell (MFC) based on carbon anode, three carbon felt samples, obtained by simple water cleaning (CCF), heating (HCF) and oxidation with ammonium persulfate (ACF), were characterized with SEM, BET, FTIR, cyclic voltammetry and acid titration, and their performances as anode of MFC were investigated with polarization curve measurement, chronoamperometry and chronopotentiometry. It is found that the power output of MFC depends on the morphology rather than the oxygen-containing group concentration of the carbon felt surface. CCF, HCF and ACF have their surface oxygen-containing groups of 1.52, 0.8 and 0.45 mM m−2 and specific surface areas of 0.33, 0.65 and 1.19 m2 g−1, but yield their maximal power densities of 606, 858 and 990 mW m−2, respectively. This study suggests that intensive attention should be paid to the design of surface morphology in order to improve power generation of MFC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.