Abstract

Abstract The sources of intermodel uncertainty in regional tropical rainfall projections are examined using a framework of atmosphere-only experiments. Uncertainty is dominated by model disagreement on shifts in convective regions, but the drivers of this uncertainty differ between land and ocean. Over the tropical oceans SST pattern uncertainty plays a substantial role, although it is not the only cause of uncertainty. Over land SST pattern uncertainty appears to be much less influential, and the largest source of uncertainty comes from the response to uniform SST warming, with a secondary contribution from the response to direct CO2 forcing. This may be because a larger number of processes can cause rainfall change in response to uniform SST warming than direct CO2 forcing, and so there is more potential for models to disagree. However, new experiments designed to more accurately decompose the regional climate responses of coupled models, combined with results from high-resolution climate modeling, are needed before these results can be considered robust. The pattern of present-day rainfall does not in general provide emergent constraints on future regional rainfall change. Correlations between relative humidity (RH) change and spatial shifts in convection over many land regions suggest that a proposed causal influence of RH change on dynamical rainfall change is plausible, although causality is not demonstrated here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.