Abstract

BackgroundThe worldwide society is currently facing an epidemiological shift due to the significant improvement in life expectancy and increase in the elderly population. This shift requires the public and scientific community to highlight successful aging (SA), as an indicator representing the quality of elderly people’s health. SA is a subjective, complex, and multidimensional concept; thus, its meaning or measuring is a difficult task. This study seeks to identify the most affecting factors on SA and fed them as input variables for constructing predictive models using machine learning (ML) algorithms.MethodsData from 1465 adults aged ≥ 60 years who were referred to health centers in Abadan city (Iran) between 2021 and 2022 were collected by interview. First, binary logistic regression (BLR) was used to identify the main factors influencing SA. Second, eight ML algorithms, including adaptive boosting (AdaBoost), bootstrap aggregating (Bagging), eXtreme Gradient Boosting (XG-Boost), random forest (RF), J-48, multilayered perceptron (MLP), Naïve Bayes (NB), and support vector machine (SVM), were trained to predict SA. Finally, their performance was evaluated using metrics derived from the confusion matrix to determine the best model.ResultsThe experimental results showed that 44 factors had a meaningful relationship with SA as the output class. In total, the RF algorithm with sensitivity = 0.95 ± 0.01, specificity = 0.94 ± 0.01, accuracy = 0.94 ± 0.005, and F-score = 0.94 ± 0.003 yielded the best performance for predicting SA.ConclusionsCompared to other selected ML methods, the effectiveness of the RF as a bagging algorithm in predicting SA was significantly better. Our developed prediction models can provide, gerontologists, geriatric nursing, healthcare administrators, and policymakers with a reliable and responsive tool to improve elderly outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.