Abstract

An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001–0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

Highlights

  • The prevalence of obesity is increasing dramatically in both Western and developing countries [1]

  • Epidemiological studies consistently show that dairy-product intake is inversely related to obesity, as determined by body mass index [3,4,5], and the metabolic syndrome [6,7,8] which is defined as a cluster of risk factors for cardiovascular disease and type 2 diabetes [9,10]

  • Conclusions from intervention studies are, rather inconsistent, as some studies demonstrate a beneficial effect of dairy product intake on the amount of body fat [11,12] whereas other studies show no effect on body weight and other parameters related to the metabolic syndrome [13,14]

Read more

Summary

Introduction

The prevalence of obesity is increasing dramatically in both Western and developing countries [1]. Epidemiological studies consistently show that dairy-product intake is inversely related to obesity, as determined by body mass index [3,4,5], and the metabolic syndrome [6,7,8] which is defined as a cluster of risk factors for cardiovascular disease and type 2 diabetes [9,10]. Various milk components have been suggested to be beneficial, including the milk proteins whey and casein. Both are high quality proteins and contain all the essential amino acids [15]. Recent studies indicate that whey protein in particular reduces body weight and improves insulin sensitivity in rodent models [16,17,18,19] as well as in humans [20,21,22]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call