Abstract

Whey protein isolate (WPI)-derived bioactive peptide fractions (1–3, 3–5, 5–10, 1–10, and >10 kDa) were for the first time used as emulsifiers in nanoemulsions. The formation and storage stability of WPI bioactive peptide-stabilized nanoemulsions depended on the peptide size, enzyme type, peptide concentration, and storage temperature. The highly bioactive <10 kDa fractions were either poorly surface-active or weak stabilizers in nanoemulsions. The moderately bioactive >10 kDa fractions formed stable nanoemulsions (diameter = 174–196 nm); however, their performance was dependent on the peptide concentration (1–4%) and enzyme type. Overall, nanoemulsions exhibited better storage stability (less droplet growth and creaming) when stored at lower (4 °C) than at higher (25 °C) temperatures. This study has shown that by optimizing peptide size using ultrafiltration, enzyme type and emulsification conditions (emulsifier concentration and storage conditions), stable nanoemulsions can be produced using WPI-derived bioactive peptides, demonstrating the dual-functionality of WPI peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.