Abstract

Conservation units (CUs) are an essential tool for maximizing evolutionary potential and prioritizing areas across a species' range for protection when implementing conservation and management measures. However, current workflows for identifying CUs on the basis of neutral and adaptive genomic variation largely ignore information contained in patterns of isolation by distance (IBD), frequently the primary signal of population structure in highly mobile taxa, such as birds, bats, and marine organisms with pelagic larval stages. While individuals located on either end of a species' distribution may exhibit clear genetic, phenotypic, and ecological differences, IBD produces subtle changes in allele frequencies across space, making it difficult to draw clear boundaries for conservation purposes in the absence of discrete population structure. Here, we highlight potential pitfalls that arise when applying common methods for delineating CUs to continuously distributed organisms and review existing methods for detecting subtle breakpoints in patterns of IBD that can indicate barriers to gene flow in highly mobile taxa. In addition, we propose a new framework for identifying CUs in all organisms, including those characterized by continuous genomic differentiation, and suggest several possible ways to harness the information contained in patterns of IBD to guide conservation and management decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.