Abstract
The web is a huge source of valuable information. However, in recent times, there is an increasing trend towards false claims in social media, other web-sources, and even in news. Thus, factchecking websites have become increasingly popular to identify such misinformation based on manual analysis. Recent research proposed methods to assess the credibility of claims automatically. However, there are major limitations: most works assume claims to be in a structured form, and a few deal with textual claims but require that sources of evidence or counter-evidence are easily retrieved from the web. None of these works can cope with newly emerging claims, and no prior method can give user-interpretable explanations for its verdict on the claim's credibility. This paper overcomes these limitations by automatically assessing the credibility of emerging claims, with sparse presence in web-sources, and generating suitable explanations from judiciously selected sources. To this end, we retrieve diverse articles about the claim, and model the mutual interaction between: the stance (i.e., support or refute) of the sources, the language style of the articles, the reliability of the sources, and the claim's temporal footprint on the web. Extensive experiments demonstrate the viability of our method and its superiority over prior works. We show that our methods work well for early detection of emerging claims, as well as for claims with limited presence on the web and social media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.