Abstract

Protein-protein interaction networks - interactomes - are charted with the hope to understand how phenotypes emerge and how they are altered in disease states. Early efforts to map interactomes have focused on the assembly of context agnostic, reference networks. However, recent studies have mapped interactomes across different cell lines and tissues, finding highly variable interactomes due to the rewiring of protein-protein interactions in different contexts. Increasing evidence points to significant links between protein structure and interactome diversity seen across cell types and tissues. We discuss how recent findings support the key role of alternative splicing and phosphorylation, two well-established regulators of protein structural and functional diversity, in defining cell type- and tissue-specific interactomes. Moreover, we show that intrinsically disordered protein regions are most favorably equipped to support interactome rewiring by acting as hubs of protein structure and function regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.