Abstract
Spatial representations are processed in the service of several different cognitive functions. The present study capitalizes on the Activation Likelihood Estimation (ALE) method of meta-analysis to identify: (a) the shared neural activations among spatial functions to reveal the "core" network of spatial processing; (b) the specific neural activations associated with each of these functions. Following PRISMA guidelines, a total of 133 fMRI and PET studies were included in the meta-analysis. The overall analysis showed that the core network of spatial processing comprises regions that are symmetrically distributed on both hemispheres and that include dorsal frontoparietal regions, presupplementary motor area, anterior insula, and frontal operculum. The specific analyses revealed the brain regions that are selectively recruited for each spatial function, such as the right temporoparietal junction for shift of spatial attention, the right parahippocampal gyrus, and the retrosplenial cortex for navigation and spatial long-term memory. The findings are integrated within a systematic review of the neuroimaging literature and a new neurocognitive model of spatial cognition is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.