Abstract
Codon-anticodon recognition between triplets of an mRNA and a specific tRNA is the key element in the translation of the genetic code. In general, the precision of this process is dominated by a strict Watson-Crick base-pairing scheme. However, the degeneracy of the genetic code led Crick to propose the Wobble Hypothesis, permitting a less restraining interaction with the third base of the codon and involving the participation of inosine for decoding C-ending codons. The concept that the anticodon base A34 of tRNAACGArg in all eukaryotes, eubacteria, and plant chloroplasts is converted to I34 is firmly anchored in the literature despite conflicting evidence for its existence in higher eukaryote cytoplasmic tRNAACGArg. Here, we provide additional data and summarize the arguments favoring and contradicting post-transcriptional deamination of this position. A hypothesis that resolves the apparent conflict is proposed. © 2016 IUBMB Life, 68(6):419-422, 2016.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.