Abstract

The closer channels begin to drainage divides, the greater will be the number of channels that occupy a unit area, and consequently the more finely dissected will be the landscape. Hence, a key component of channel network growth and landscape evolution theories1–7, as well as models for topographically controlled catch-ment runoff8, should be the prediction of where channels begin. Little field data exist, however, either on channel head locations9–14 or on what processes act to initiate and maintain a channel14–17. Here we report observations from several soil-mantled regions of Oregon and California, which show that the source area above the channel head decreases with increasing local valley gradient for slopes ranging from 5 to 45 degrees. Our results support a predicted relationship between source area and slope for steep humid landscapes where channel initiation is by landsliding, but they contradict theoretical predictions for channel initiation by overland flow in gentle valleys. Our data also suggest that, for the same gradient, drier regions tend to have larger source areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.