Abstract

Abstract Multimessenger astronomy, combining gravitational-wave (GW) and electromagnetic-wave (EM) observations, has a huge impact on physics, astrophysics, and cosmology. However, the majority of sources detected with currently running ground-based GW observatories are binary black hole (BBH) mergers, which disappointingly were expected to have no EM counterparts. In this Letter, we propose that if a BBH merger happens in a gaseous disk around a supermassive black hole, the merger can be accompanied by a transient radio flare like a fast radio burst (FRB). We argue that the total mass and the effective spin derived from GW detection can be used to distinguish such a source from other channels of BBH mergers. If this prediction is confirmed with future observations, multimessenger astronomy can be greatly improved. The mystery of the origin of FRBs could also be revealed partially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.