Abstract

It has been demonstrated that RNA G-quadruplexes (G4) are structural motifs present in transcriptomes and play important regulatory roles in several post-transcriptional mechanisms. However, the full picture of RNA G4 locations and the extent of their implication remain elusive. Solely computational prediction analysis of the whole transcriptome may reveal all potential G4, since experimental identifications are always limited to specific conditions or specific cell lines. The present study reports the first in-depth computational prediction of potential G4 region across the complete human transcriptome. Although using a relatively stringent approach based on three prediction scores that accounts for the composition of G4 sequences, the composition of their neighboring sequences, and the various forms of G4, over 1.1 million of potential G4 (pG4) were predicted. The abundance of G4 was computationally confirmed in both 5′ and 3′UTR as well as splicing junction of mRNA, appreciate for the first time in the long ncRNA, while almost absent of most of the small ncRNA families. The present results constitute an important step toward a full understanding of the roles of G4 in post-transcriptional mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.