Abstract
Bacterial chromosomes have a single, unique replication origin (named oriC), from which DNA synthesis starts. This study describes methods of visualizing oriC regions and the chromosome replication in single living bacterial cells in real-time. This review also discusses the impact of live cell imaging techniques on understanding of chromosome replication dynamics, particularly at the initiation step, in different species of bacteria.
Highlights
DNA replication is an enormously intricate process, in which a few dozen enzymes catalyze a series of reactions, including DNA unwinding and the synthesis of sister DNA strands
In all three domains of life, chromosomal replication is mainly regulated at the initiation step (Nielsen and Løbner-Olesen, 2008; Aves, 2009; Skarstad and Katayama, 2013), an important cell cycle checkpoint guaranteeing that DNA replication begins at the right place and time
Single-cell fluorescence imaging and fluorescence tagging techniques allow researchers to precisely visualize proteins and their complexes inside living bacterial cells in real time. These techniques revealed that many proteins are targeted to distinct subcellular positions, where they participate in various cellular processes including chromosome replication
Summary
DNA replication is an enormously intricate process, in which a few dozen enzymes catalyze a series of reactions, including DNA unwinding and the synthesis of sister DNA strands. This process must be highly precise and accurately timed to prevent any unnecessary loss of energy and to ensure that DNA is faithfully and completely replicated only once per cell-division cycle (Leonard and Grimwade, 2015). The genetic information is distributed on two [e.g., Vibrio cholerae (Trucksis et al, 1998)] or even more [e.g., Paracoccus denitrificans (Winterstein and Ludwig, 1998)] chromosomes. Some bacteria possess linear chromosomes [e.g., Streptomyces (Lin et al, 1993)]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.