Abstract

Changes in cellular morphology induced as a consequence of direct perturbation of cytoskeletal structure with network-specific targeting agents (i.e. microfilament- or microtubule-disrupting drugs) results in the stimulated expression of a specific subset of genes. Transcription of c-fos, collagenase, transforming growth factor-β, actin, urokinase plasminogen activator and its type-1 inhibitor (PAI-1) appears to be particularly responsive to shape-activated signaling pathways. Cytochalasin D (CD) or colchicine treatment of contact-inhibited and serum-deprived vascular smooth muscle (R22) cells was used, therefore, as a model system to evaluate morphology-associated controls on PAI-1 gene regulation in the absence of added growth factors. PAI-1 transcript levels in quiescent R22 cells increased rapidly and in a CD-concentration-dependent fashion, with kinetics of expression paralleling the morphological changes. Colchicine concentrations that effectively disrupted microtubule structure and reduced the cellular `footprint9 area (to approximately that of CD treatment) also stimulated PAI-1 synthesis. Shape-related increases in PAI-1 mRNA synthesis were ablated by prior exposure to actinomycin D. Unlike the mechanism of induction in growth-factor-stimulated cells, CD- and colchicine-induced PAI-1 expression required on-going protein synthesis (i.e. it was a secondary response). Although PAI-1 is a TGF-β-regulated gene and TGF-β expression is also shape dependent, an autocrine TGF-β loop was not a factor in CD-initiated PAI-1 transcription. Since CD exposure resulted in actin microfilament disruption and subsequent morphological changes, with uncertain effects on interactions between signaling intermediates or `scaffold9 structures, a pharmacological approach was selected to probe the pathways involved. Signaling events leading to PAI-1 induction were compared with colchicine-treated cells. CD- as well as colchicine-stimulated PAI-1 expression was effectively and dose dependently attenuated by the MEK inhibitor PD98059 (in the 10 to 25 μM concentration range), consistent with the known MAP kinase dependency of PAI-1 synthesis in growth-factor-stimulated cells. Reduced PAI-1 mRNA levels upon exposure to genistein prior to CD addition correlated with inhibition of ERK1/2 activity, implicating a tyrosine kinase in shape-dependent MEK activation. Src-family kinases, moreover, appeared to be specific upstream elements in the CD- and colchicine-dependent pathways of PAI-1 transcription since both agents effectively activated pp60c-src kinase activity in quiescent R22 cells. The restrictive (src-family) kinase inhibitor PP1 completely inhibited induced, as well as basal, ERK activity in a coupled immunoprecipitation myelin-basic-protein-phosphorylation assay and ablated shape-initiated PAI-1 mRNA expression. These data suggest that PP1-sensitive tyrosine kinases are upstream intermediates in cell-shape-associated signaling pathways resulting in ERK1/2 activation and subsequent PAI-1 transcription. In contrast to the rapid and transient kinetics of ERK activity typical of serum-stimulated cells, the ERK1/2 response to CD and colchicine is both delayed and relatively sustained. Collectively, these data support a model in which MEK is a focal point for the convergence of shape-initiated signaling events leading to induced PAI-1 transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.