Abstract
In many practical situations, we need to compute local maxima. In general, it is not algorithmically possible, given a computable function, to compute the locations of all its local maxima. We show, however, that if we know the number of local maxima, then such an algorithm is already possible. Interestingly, for global maxima, the situation is different: even if we only know the number of locations where the global maximum is attained, then, in general, it is not algorithmically possible to find all these locations. A similar impossibility result holds for local maxima if instead of knowing their exact number, we only know two possible numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.