Abstract
Type inference in the presence of first-class or “impredicative” second-order polymorphism à la System F has been an active research area for several decades, with original works dating back to the end of the 80s. Yet, until now many basic problems remain open, such as how to type check expressions like (𝜆𝑥. (𝑥 123, 𝑥 True)) id reliably. We show that a type inference approach based on multi-bounded polymorphism, a form of implicit polymorphic subtyping with multiple lower and upper bounds, can help us resolve most of these problems in a uniquely simple and regular way. We define F {≤} , a declarative type system derived from the existing theory of implicit coercions by Cretin and Rémy (LICS 2014), and we introduce SuperF, a novel algorithm to infer polymorphic multi-bounded F {≤} types while checking user type annotations written in the syntax of System F. We use a recursion-avoiding heuristic to guarantee termination of type inference at the cost of rejecting some valid programs, which thankfully rarely triggers in practice. We show that SuperF is vastly more powerful than all first-class-polymorphic type inference systems proposed so far, significantly advancing the state of the art in type inference for general-purpose programming languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.