Abstract
Unexpected contingencies in robot execution may induce a cascade of effects, especially when multiple robots are involved. In order to effectively adapt to this, robots need the ability to reason along multiple dimensions at execution time. We propose an approach to closed-loop planning capable of generating configuration plans, i.e., action plans for multirobot systems which specify the causal, temporal, resource and information dependencies between individual sensing, computation, and actuation components. The key feature which enables closed loop performance is that configuration plans are represented as constraint networks, which are shared between the planner and the executor and are continuously updated during execution. We report experiments run both in simulation and on real robots, in which a fault in one robot is compensated through different types of plan modifications at run time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.