Abstract

Scientists aim to remediate artifacts in their experimental datasets. However, the remediation of one artifact can result in another. Why might this happen, and what does this consequence tell us about how we should account for artifacts and their control? In this paper, I explore a case in functional neuroimaging where remediation appears to have caused this problem. I argue that remediation amounts to a change to an experimental arrangement. These changes need not be surgical, and the arrangement need not satisfy the criterion of causal modularity. Thus, remediation can affect more than just the factor responsible for the artifact. However, if researchers can determine the consequences of their remediation, they can make adjustments that control for the present artifact as well as for previously controlled ones. Current philosophical accounts of artifacts and the factors responsible for them cannot adequately address this issue, as they do not account for what is needed for artifact remediation (and specifically correction). I support my argument by paralleling it with ongoing concerns regarding the transparency of complex computational systems, as near future remediation across the experimental life sciences will likely make greater use of AI tools to correct for artifacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call