Abstract
Sea turtles have temperature-dependent sex determination. Because females are produced at high temperatures, increasing global temperature may lead to population feminization. Primary sex ratios (PSR) of sea turtle hatchlings are naturally female-biased, but this translates into a more balanced operational sex ratio because male turtles reproduce more often than females. As a consequence, a balanced PSR and the temperature that produces it (pivotal temperature) are of limited use to guide climate mitigation management because an equal PSR may be demographically suboptimal. Here, I define population-advantageous primary sex ratios (PA-PSR) as the PSR that will tend to be in equilibrium in a population and that will result in balanced operational sex ratios; I then estimate PA-PSR for different reproductive frequencies (years elapsed between reproductive seasons) of adult female and male turtles. I also define population equilibrium temperature (PET) as the temperature that would result in the equilibrium PSR of hatchlings (i.e., PA-PSR). These concepts may help assess the influence of rising temperatures on populations, as they can better indicate if PSRs depart from those at equilibrium. I compared PA-PSR and beach PSR for two populations of sea turtles for which male and female remigration intervals were known and found that a mild or no feminization over the PA-PSR may be occurring. Because PSR varies inter-annually, and hatchlings coming from beaches of different thermal conditions could recruit to the same population, it is critical to estimate beach PSR at the right temporal and spatial scales. Climate mitigation strategies based on these concepts could provide better management guidance for conservation practitioners. Similar approaches could be considered for other female-biased species with temperature-dependent sex determination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.