Abstract

Kleptoparasitism can be considered as a game theoretical problem and a foraging tactic at the same time, so the aim of this paper is to combine the basic ideas of two research lines: evolutionary game theory and optimal foraging theory. To unify these theories, firstly, we take into account the fact that kleptoparasitism between foragers has two consequences: the interaction takes time and affects the net energy intake of both contestants. This phenomenon is modeled by a matrix game under time constraints. Secondly, we also give freedom to each forager to avoid interactions, since in optimal foraging theory foragers can ignore each food type (we have two prey types: either a prey item in possession of another predator or a free prey individual is discovered). The main question of the present paper is whether the zero-one rule of optimal foraging theory (always or never select a prey type) is valid or not, in the case where foragers interact with each other?In our foraging game we consider predators who engage in contests (contestants) and those who never do (avoiders), and in general those who play a mixture of the two strategies. Here the classical zero-one rule does not hold. Firstly, the pure avoider phenotype is never an ESS. Secondly, the pure contestant can be a strict ESS, but we show this is not necessarily so. Thirdly, we give an example when there is mixed ESS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.