Abstract

The Indo-West Pacific is characterized by extraordinary marine species diversity. The evolutionary mechanisms responsible for generating this diversity remain puzzling, but are often linked to Pleistocene sea level fluctuations. The impact of these sea level changes on the population genetic architecture of the estuarine fish Lates calcarifer are investigated via a natural experiment in a region of the Indo-West Pacific known to have undergone considerable change during the Pleistocene. L. calcarifer, a coastline-restricted catadromous teleost, provides an excellent model for studying the effects of sea level change as its habitat requirements potentially make it sensitive to the region's physical history. Evidence was found for a large phylogenetic break (4% mtDNA control region; 0.47% ATPase 6 and 8) either side of the Torres Strait, which separates the Western Pacifc and Indian Oceans, although some mixing of the clades was evident. This suggests clinal secondary introgression of the clades via contemporary gene flow. Further, populations on Australia's east coast appear to have passed through a bottleneck. This was linked to the historical drying of the Great Barrier Reef coastal lagoon, which resulted in a significant loss of habitat and forced retreat into isolated refugia. These results suggest that historical eustatic changes have left a significant imprint on the molecular diversity within marine species as well as among those in the Indo-West Pacifc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call