Abstract
We consider nonlinear systems of first order partial differential equations admitting at least two one-parameter Lie groups of transformations with commuting infinitesimal operators. Under suitable conditions it is possible to introduce a variable transformation based on canonical variables which reduces the model in point to autonomous form. Remarkably, the transformed system may admit constant solutions to which there correspond non-constant solutions of the original model. The results are specialized to the case of first order quasilinear systems admitting either dilatation or spiral groups of transformations and a systematic procedure to characterize special exact solutions is given. At the end of the paper the equations of axi-symmetric gas dynamics are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.