Abstract

In recent years, multi-access edge computing (MEC) is emerging to provide computation and storage capabilities to the Internet of things (IoT) devices to improve the quality of service (QoS) of IoT applications. In addition, intelligent reflecting surface (IRS) techniques have attracted great interests from both academia and industry to improve the communication efficiency. Although existing works leverage the IRS technique in MEC networks, they mainly focus on the single-IRS single-area scenario. However, in practice, multi-IRS will be deployed in multi-area scenarios in future networks. Consequently, considering the single-IRS single-area scenario will have inferior performance. In this paper, to address the aforementioned issue, we propose an efficient resource provisioning scheme for multi-IRS multi-area scenarios in MEC networks. We first model the problem as a cooperative multi-agent reinforcement learning process, where each agent manages one area and all agents share the network bandwidth and computation resources. Then, we propose a multi-agent actor-critic method with an attention mechanism for resource management with latency guarantee. Finally, we conduct extensive simulations to verify the effectiveness of the proposed scheme. Our scheme can reduce the required computation resources by up to 11.84% when compared with the benchmark works. It is also shown that our proposed scheme can improve the efficiency of resource allocation and scale well with the increasing demand from IoT devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call