Abstract

We investigate rates of electron transfer for generalized Anderson-Holstein models in the limit of weak molecule-metal coupling, using both surface hopping and electronic friction dynamics in one and two dimensions. Overall, provided there is an external source of friction, electronic friction can sometimes perform well even in the limit of small metal-molecule coupling and capture nonadiabatic effects. However, we show that electronic friction dynamics is likely to fail if there is a competition between nonequivalent pathways. Our conclusions provide further insight into the recent observation by Ouyang et al., [J. Chem. Theory Comput., 2016, 12, 4178] regarding the applicability of Kramer's theory in the adiabatic limit to recover Marcus theory in the nonadiabatic limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.