Abstract
Let K be a compact Lie group of positive dimension. We show that for most unitary K-modules the corresponding symplectic quotient is not regularly symplectomorphic to a linear symplectic orbifold (the quotient of a unitary module of a finite group). When K is connected, we show that even a symplectomorphism to a linear symplectic orbifold does not exist. Our results yield conditions that preclude the symplectic quotient of a Hamiltonian K-manifold from being locally isomorphic to an orbifold. As an application, we determine which unitary SU2-modules yield symplectic quotients that are Z+-graded regularly symplectomorphic to a linear symplectic orbifold. We similarly determine which unitary circle representations yield symplectic quotients that admit a regular diffeomorphism to a linear symplectic orbifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.