Abstract

The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main-group and transition metal compounds are provided, across covalent, dative and charge-shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call