Abstract

The number of human genetic disorders shown to be due to defects in membrane trafficking has greatly increased during the past five years. Defects have been identified in components involved in sorting of cargo into transport carriers, vesicle budding and scission, movement of vesicles along cytoskeletal tracks, as well as in vesicle tethering, docking and fusion at the target membrane. The nervous system is extremely sensitive to such disturbances of the membrane trafficking machinery, and the majority of these disorders display neurological defects--particularly diseases affecting the motility of transport carriers along cytoskeletal tracks. In several disorders, defects in a component that represents a fundamental part of the trafficking machinery fail to cause global transport defects but result in symptoms limited to specific cell types and transport events; this apparently reflects the redundancy of the transport apparatus. In groups of closely related diseases such as Hermansky-Pudlak and Griscelli syndromes, identification of the underlying gene defects has revealed groups of genes in which mutations lead to similar phenotypic consequences. New functionally linked trafficking components and regulatory mechanisms have thus been discovered. Studies of the gene defects in trafficking disorders therefore not only open avenues for new therapeutic approaches but also significantly contribute to our knowledge of the fundamental mechanisms of intracellular membrane transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call