Abstract

Since debris flows represent one of the most dangerous natural hazard in mountain areas, Early Warning Systems (EWSs) play a crucial role in reducing the risk of these hazardous processes. Robust event pre-alert usually relies on long time series of local rainfall measures. Oftentimes regional rain gauge networks present an insufficient spatial density to grasp the highly variable spatio-temporal dynamics of debris-flow triggering events and thus relying on such networks for developing rainfall thresholds might lead to relatively low rainfall estimates. The present paper reports the development of operational rainfall thresholds for the Cancia EWS, Dolomites (NE Italy). The instrumentation configuration led to the derivation and implementation of a set of rainfall thresholds that significantly enhanced pre-alarm reliability thanks to an optimal spatial distribution of multiple rain gauges within the catchment. Notwithstanding the small number of debris flows occurred during the calibration period, rainfall thresholds were derived considering the whole population of rainfall events showcasing the statistical properties of those events that led to debris-flow initiation. Finally, the validation period served as proof of work for the proposed thresholds with no raised false alarms and with the identification of few minor, but correctly detected, debris flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call