Abstract

Ultrasensitive and ultraselective detection of the gene requires emergency development to meet the medical demands and infectious disease control. Herein we report a versatile and scalable method based on electrochemical-chemical-cyclic amplification (EC-CA) and fluorescence detection for ultrasensitive gene sensing. The EC-CA is achieved by an electro-Fenton reaction (EFR). The hydroxyl radicals generated at EFR are trapped by terephthalic acid to form highly fluorescent 2-hydroxyterephthalic acid, which can be sensitively detected by a fluorescence spectrophotometer. The method is the first to be able to amplify the signal and reduce the noise simultaneously by using the conventional analytical methods directly. This described method can be used for reliable Fe3+ quantification in the range from 0.1 nM to 0.08 mM. The calculated limit of detection (LOD) is 0.02 nM. Then, hepatitis B virus (HBV) and p53 gene were detected by this proposed method through introducing the Fe3O4 nanoparticles into the gene hybridization system. The LODs for HBV and p53 gene even topped out at 2.6 pM and 1.7 fM, respectively. We demonstrated that the finally recorded signal was triply amplified through the EC cycle, Fe3O4 nanoparticles, and sensitive fluorescence detection. At the same time, the background signal arisen from matrix effects and readout noise was effectively suppressed. This method shows it is simple, convenient, and operational through the detection of Fe3+, HBV, and the p53 gene in blood samples, respectively. We believe our method will make a significant, near-term impact on the development of high-sensitivity methods that are versatile and scalable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.