Abstract

Nowadays, with the development of artificial intelligence (AI), privacy issues attract wide attention from society and individuals. It is desirable to make the data available but invisible, i.e., to realize data analysis and calculation without disclosing the data to unauthorized entities. Federated learning (FL) has emerged as a promising privacy-preserving computation method for AI. However, new privacy issues have arisen in FL-based application because various inference attacks can still infer relevant information about the raw data from local models or gradients. This will directly lead to the privacy disclosure. Therefore, it is critical to resist these attacks to achieve complete privacy-preserving computation. In light of the overwhelming variety and a multitude of privacy-preserving computation protocols, we survey these protocols from a series of perspectives to supply better comprehension for researchers and scholars. Concretely, the classification of attacks is discussed including four kinds of inference attacks as well as malicious server and poisoning attack. Besides, this paper systematically captures the state of the art of privacy-preserving computation protocols by analyzing the design rationale, reproducing the experiment of classic schemes, and evaluating all discussed protocols in terms of efficiency and security properties. Finally, this survey identifies a number of interesting future directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.