Abstract

Ets proteins are a family of transcription factors that regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with other structurally unrelated transcription factors. Indeed, combinatorial control is a characteristic property of Ets family members, involving interactions between Ets and other key transcriptional factors such as AP1, SRF, and Pax family members. Intriguingly, recent molecular modeling and crystallographic data suggest that not only the ETS DNA-binding domain, but also the DNA recognition helix alpha3, are often directly required for Ets partner's selection. Indeed, while most DNA-binding proteins appear to exploit differences within their DNA recognition helices for sites selection, the Ets proteins exploit differences in their surfaces that interact with other transcription factors, which in turn may modify their DNA-binding properties in a promoter-specific fashion. Taken together, the gene-specific architecture of these unique complexes can mediate the selective control of transcriptional activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.