Abstract

For certain classes 𝒞 of R-modules, including singular modules or modules with locally Krull dimensions, it is investigated when every module in 𝒞 with a finitely generated essential submodule is finitely generated. In case 𝒞 = Mod-R, this means E(M)/M is Noetherian for any finitely generated module MR. Rings R with latter property are studied and shown that they form a class 𝒬 properly between the class of pure semisimple rings and the class of certain max rings. Duo rings in 𝒬 are precisely Artinian rings. If R is a quasi continuous ring in 𝒬 then R ≃ A ⊕ T where A is a semisimple Artinian ring and T ∈ 𝒬 with Z(TT) ≤ess TT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.