Abstract

A number of computational imaging techniques are introduced to improve image quality by increasing light throughput. These techniques use optical coding to measure a stronger signal level. However, the performance of these techniques is limited by the decoding step, which amplifies noise. Although it is well understood that optical coding can increase performance at low light levels, little is known about the quantitative performance advantage of computational imaging in general settings. In this paper, we derive the performance bounds for various computational imaging techniques. We then discuss the implications of these bounds for several real-world scenarios (e.g., illumination conditions, scene properties, and sensor noise characteristics). Our results show that computational imaging techniques do not provide a significant performance advantage when imaging with illumination that is brighter than typical daylight. These results can be readily used by practitioners to design the most suitable imaging systems given the application at hand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.