Abstract

Multi-agent systems need to communicate to coordinate a shared task. We show that a recurrent neural network (RNN) can learn a communication protocol for coordination, even if the actions to coordinate are performed steps after the communication phase. We show that a separation of tasks with different temporal scale is necessary for successful learning. We contribute a hierarchical deep reinforcement learning model for multi-agent systems that separates the communication and coordination task from the action picking through a hierarchical policy. We further on show, that a separation of concerns in communication is beneficial but not necessary. As a testbed, we propose the Dungeon Lever Game and we extend the Differentiable Inter-Agent Learning (DIAL) framework. We present and compare results from different model variations on the Dungeon Lever Game.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.