Abstract
A rich literature has demonstrated facial attractiveness related discrimination (beauty bias ) in a wide range of contexts, such as personal marketing, election voting and employment. Under a controlled lab setting, most of these studies have found that attractiveness is rewarded. However, these studies cannot imitate long-term, real world interactions and thus lack external validity. In this paper, we show the long-term dynamics of bias to discern among sources of attractiveness bias. We investigate two sources of attractiveness bias, namely, belief based and preference based. Belief based bias against subjects exists because evaluators have group-level priors based on the subjects’ attractiveness. These priors are overcome as the evaluator obtains objective signals of performance. Preference based bias exists because evaluators have an inherent taste for a social, romantic or marital relationship with attractive subjects. We use one of the largest archival longitudinal data sets (43,533 MBA graduates) in this area of research to identify these two sources. We find that attractiveness is associated with a 2.4% gap over a 15-year career period. This gap is largely explained by preference bias which is associated with attractiveness gap of 0.52% per year. On the other hand, belief bias has no significant role in post-MBA professional careers. This is a significant finding because belief bias towards an individual can be minimized by the individuals’ performance information. However, preference based biases are much harder to remove. In our setting, there are two key challenges in working with unstructured data. First, for an individual, we observe only one current picture, which is taken up to 25 years after the start of the individual’s professional career. We build a generative deep learning model to create life-like versions of a face, thus allowing us to emulate the employers’ perceptions of how the individual looked at a younger age. Second, individuals move across job profiles, companies and locations, thereby making it difficult to directly compare their career milestones. We construct a preference order for jobs (job rank) based on observed job switching and text-based job title similarities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.