Abstract
We derive results of the following flavor: If a combinatorial optimization problem can be formulated via a dynamic program of a certain structure and if the involved cost and transition functions satisfy certain arithmetical and structural conditions, then the optimization problem automatically possesses a fully polynomial time approximation scheme (FPTAS). Our characterizations provide a natural and uniform approach to fully polynomial time approximation schemes. We illustrate their strength and generality by deducing from them the existence of FPTASs for a multitude of scheduling problems. Many known approximability results follow as corollaries from our main result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.