Abstract

A test item is typically considered free of differential item functioning (DIF) if its item response function is the same across demographic groups. A popular means of testing for DIF is the Mantel-Haenszel (MH) approach. Holland and Thayer (1988) showed that, under the Rasch model, identity of item response functions across demographic groups implies that the MH null hypothesis will be satisfied when the MH matching variable is test score, including the studied item. This result, however, cannot be generalized to the class of items for which item response functions are monotonic and local independence holds. Suppose that all item response functions are identical across groups, but the ability distributions for the two groups are stochastically ordered. In general, the population MH result will show DIF favoring the higher group on some items and the lower group on others. If the studied item is excluded from the matching criterion under these conditions, the population MH result will always show DIF favoring the higher group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.