Abstract
We present a new deep dictionary learning and coding network (DDLCN) for image-recognition tasks with limited data. The proposed DDLCN has most of the standard deep learning layers (e.g., input/output, pooling, and fully connected), but the fundamental convolutional layers are replaced by our proposed compound dictionary learning and coding layers. The dictionary learning learns an overcomplete dictionary for input training data. At the deep coding layer, a locality constraint is added to guarantee that the activated dictionary bases are close to each other. Then, the activated dictionary atoms are assembled and passed to the compound dictionary learning and coding layers. In this way, the activated atoms in the first layer can be represented by the deeper atoms in the second dictionary. Intuitively, the second dictionary is designed to learn the fine-grained components shared among the input dictionary atoms; thus, a more informative and discriminative low-level representation of the dictionary atoms can be obtained. We empirically compare DDLCN with several leading dictionary learning methods and deep learning models. Experimental results on five popular data sets show that DDLCN achieves competitive results compared with state-of-the-art methods when the training data are limited. Code is available at https://github.com/Ha0Tang/DDLCN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.