Abstract

When viewing familiar stimuli (e.g., common words), processing is highly automatized such that it can interfere with the processing of incompatible sensory information. At least two mechanisms may help mitigate this interference. Early selection accounts posit that attentional processes filter out distracting sensory information to avoid conflict. Alternatively, late selection accounts hold that all sensory inputs receive full semantic analysis and that frontal executive mechanisms are recruited to resolve conflict. To test how these mechanisms operate to overcome conflict induced by highly automatized processing, we developed a novel version of the color-word Stroop task, where targets and distractors were simultaneously flickered at different frequencies. We measured the quality of early sensory processing by assessing the amplitude of steady-state visually evoked potentials (SSVEPs) elicited by targets and distractors. We also indexed frontal executive processes by assessing changes in frontal theta oscillations induced by color-word incongruency. We found that target- and distractor-related SSVEPs were not modulated by changes in the level of conflict whereas frontal theta activity increased on high compared to low conflict trials. These results suggest that frontal executive processes play a more dominant role in mitigating cognitive interference driven by the automatic tendency to process highly familiar stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call