Abstract

Broad learning system (BLS) is a novel neural network with efficient learning and expansion capacity, but it is sensitive to noise. Accordingly, the existing robust broad models try to suppress noise by assigning each sample an appropriate scalar weight to tune down the contribution of noisy samples in network training. However, they disregard the useful information of the noncorrupted elements hidden in the noisy samples, leading to unsatisfactory performance. To this end, a novel BLS with adaptive reweighting (BLS-AR) strategy is proposed in this article for the classification of data with label noise. Different from the previous works, the BLS-AR learns for each sample a weight vector rather than a scalar weight to indicate the noise degree of each element in the sample, which extends the reweighting strategy from sample level to element level. This enables the proposed network to precisely identify noisy elements and thus highlight the contribution of informative ones to train a more accurate representation model. Thanks to the separability of the model, the proposed network can be divided into several subnetworks, each of which can be trained efficiently. In addition, three corresponding incremental learning algorithms of the BLS-AR are developed for adding new samples or expanding the network. Substantial experiments are conducted to explicate the effectiveness and robustness of the proposed BLS-AR model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call