Abstract

How to design System of Systems has been widely concerned in recent years, especially in military applications. This problem is also known as SoS architecting, which can be boiled down to two subproblems: selecting a number of systems from a set of candidates and specifying the tasks to be completed for each selected system. Essentially, such a problem can be reduced to a combinatorial optimization problem. Traditional exact solvers such as branch-bound algorithm are not efficient enough to deal with large scale cases. Heuristic algorithms are more scalable, but if input changes, these algorithms have to restart the searching process. Re-searching process may take a long time and interfere with the mission achievement of SoS in highly dynamic scenarios, e.g., in the Mosaic Warfare. In this paper, we combine artificial intelligence with SoS architecting and propose a deep reinforcement learning approach DRL-SoSDP for SoS design. Deep neural networks and actor–critic algorithms are used to find the optimal solution with constraints. Evaluation results show that the proposed approach is superior to heuristic algorithms in both solution quality and computation time, especially in large scale cases. DRL-SoSDP can find great solutions in a near real-time manner, showing great potential for cases that require an instant reply. DRL-SoSDP also shows good generalization ability and can find better results than heuristic algorithms even when the scale of SoS is much larger than that in training data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.