Abstract
When a linear accelerator is unavailable for treatment, a clinical decision is imminent regarding whether a patient should be treated on a linear accelerator other than the machine the patient was scheduled on, or whether treatment should be postponed until the original Linac becomes available. This work investigates the feasibility of switching patients to different accelerators for intensity-modulated radiation therapy (IMRT). We have performed Monte Carlo simulations of photon beams from different Linac models and vendors. Prostate and head and neck (H&N) treatment plans for Siemens Primus, Primart, and Varian 21EX accelerators are studied in this work. Dose distributions for given plans are recalculated using different beam data with the same nominal energy from different Linacs. We have compared dose-volume histograms (DVHs) and the maximum, the minimum, and the mean doses to the target and critical structures because of switching accelerators. In the process of switching a treatment plan to a different accelerator, issues exist, including optimum penumbra compensation, dose distribution at the boundary of target and critical structures, and multileaf collimator (MLC) leaf-width effects, which need to be considered and verified with measurements. Our Monte Carlo simulation results confirm that, for the cases we tested, the dose received by 95% of the planning target volume differs by 0.2% to 1.5% between Siemens Primus and Varian 21EX Linacs. The discrepancy is within our clinical acceptance criteria of 3% for IMRT treatments. In making the final decision on whether to switch machines or not, the tumor control probabilities (TCPs) based on a linear-quadratic model are compared. Based on the analyses performed in this work, it is therapeutically more beneficial to switch a patient to a different machine than to postpone a treatment until the original machine is available, especially for fast-growing tumors such as H&N cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.