Abstract
Many mathematical models of natural phenomena are described by partial differential equations (PDEs) that consist of additive contributions from different physical processes. Classical methods for the numerical solution to such equations are monolithic in that all processes are treated with a single method. Additive numerical methods, in contrast, apply distinct methods to each additive term. There are, however, different ways mathematically to specify the additive terms, and it is not always clear which ways (if any) offer advantages over monolithic methods. This study compares the performance of two different additive splitting techniques (physics-based splitting and dynamic linearization) on a suite of eight test problems that involve advection, reaction, and diffusion with various 2-additive Runge–Kutta methods and (monolithic) Runge–Kutta–Chebyshev (RKC) methods. Results show that dynamic linearization generally outperforms physics-based splitting and so should be preferred as the splitting technique when splitting is required or otherwise desirable. RKC methods are the best performers on three of the eight problems, especially at coarse tolerances, but they can also be prone to severe underperformance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.