Abstract

AbstractAnimal gametes unite to form a zygote that develops into an adult with gonads that, in turn, produce gametes. Interruption of this germinal cycle by prezygotic or postzygotic reproductive barriers can result in two cycles, each with the potential to evolve into a new species. When the speciation process is complete, members of each species are fully reproductively isolated from those of the other. During speciation a primary barrier may be supported and eventually superceded by a later-appearing secondary barrier. For those holding certain cases of prezygotic isolation to be primary (e.g. elephant cannot copulate with mouse), the onus is to show that they had not been preceded over evolutionary time by periods of postzygotic hybrid inviability (genically determined) or sterility (genically or chromosomally determined). Likewise, the onus is upon those holding cases of hybrid inviability to be primary (e.g. Dobzhansky–Muller epistatic incompatibilities) to show that they had not been preceded by periods, however brief, of hybrid sterility. The latter, when acting as a sympatric barrier causing reproductive isolation, can only be primary. In many cases, hybrid sterility may result from incompatibilities between parental chromosomes that attempt to pair during meiosis in the gonad of their offspring (Winge-Crowther-Bateson incompatibilities). While such incompatibilities have long been observed on a microscopic scale, there is growing evidence for a role of dispersed finer DNA sequence differences (i.e. in base k-mers).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call