Abstract
AbstractExposing wide-bandgap ionic materials to UV and IR photons can produce ion emissions with kinetic energies of several eV, well in excess of the photon energy. Electron emissions are also observed. This implies that these materials possess occupied electronic defect states within the band gap. We have investigated the consequences of a variety of defect-generating stimuli (electron irradiation, laser irradiation, mechanical treatments, and heating) on electron and ion emission from inorganic ionic crystals. These stimuli generate defects that strongly interact with the probe laser on a wide variety of ionic crystals, and dramatically decrease the probe laser intensities required for ion and neutral emissions, laser damage, and plume formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.