Abstract

We consider a Bohmian approach to the Wheeler-DeWitt quantization of the Friedmann-Lemaitre-Robertson-Walker model and investigate the question whether or not there are singularities, in the sense that the universe reaches zero volume. We find that for generic wave functions (i.e., non-classical wave functions), there is a non-zero probability for a trajectory to be non-singular. This should be contrasted to the consistent histories approach for which it was recently shown by Craig and Singh that there is always a singularity. This result illustrates that the question of singularities depends much on which version of quantum theory one adopts. This was already pointed out by Pinto-Neto et al., albeit with a different Bohmian approach. Our current Bohmian approach agrees with the consistent histories approach by Craig and Singh for single-time histories, unlike the one studied earlier by Pinto-Neto et al. Although the trajectories are usually different in the two Bohmian approach, their qualitative behavior is the same for generic wave functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.