Abstract

In this paper, we describe the motion control for a personal mobility robot (PMR) that is a wheeled inverted pendulum vehicle. The structure of the PMR consists of a seat slider and two independent leg wheels attached on either side; this enables the driver to mount the PMR by changing the vehicle's height from the squatting position to the standing position. In addition, this structure can control the roll posture of the vehicle and thus prevent the PMR from toppling over because of a short tread. The seat slider facilitates a stable pitch posture with suitable control. We present an overview of the kinematic structure, three-dimensional dynamics model, and control method based on the linear-quadratic regulator (LQR), in order to achieve stable control of the PMR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.