Abstract

PurposeWheelchair robot navigation in different weather conditions using single camera is still a challenging task. The purpose of this study is to develop an autonomous wheelchair robot navigation method in different weather conditions, with single camera vision to assist physically disabled people.Design/methodology/approachA road detection method, called dimensionality reduction deep belief neural network (DRDBNN), is proposed for drivable road detection. Due to the dimensionality reduction ability of the DRDBNN, it detects the drivable road area in a short time for controlling the robot in real-time. A feed-forward neural network is used to control the robot for the boundary following navigation using evolved neural controller (ENC). The robot detects road junction area and navigates throughout the road, except in road junction, using calibrated camera and ENC. In road junction, it takes turning decision using Google Maps data, thus reaching the final destination.FindingsThe developed method is tested on a wheelchair robot in real environments. Navigation in real environments indicates that the wheelchair robot moves safely from source to destination by following road boundary. The navigation performance in different weather conditions of the developed method has been demonstrated by the experiments.Originality/valueThe wheelchair robot can navigate in different weather conditions. The detection process is faster than that of the previous DBNN method. The proposed ENC uses only distance information from the detected road area and controls the robot for boundary following navigation. In addition, it uses Google Maps data for taking turning decision and navigation in road junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.